Abstract

A phase stability diagram of ruthenium-zirconium oxide (Ru-Sn-O) was constructed by a combination of ab initio density functional theory and thermodynamic calculations. Results suggest that the phase separation/segregation that has been reported in the literature for the RuO(2)-SnO(2) system is through a typical spinodal decomposition mechanism. Ru(0.45)Sn(0.55)O(2) films were prepared by thermal co-decomposition of precursors at 500 °C for varied duration. Quantitative phase analyses of the prepared films based on X-ray diffraction and high-resolution transmission electron microscopy confirmed the spinodal nature of the phase separation. The present fundamental study provides a theoretical guideline for the phase and microstructure design of Ru-Sn-O based mixed oxides for electrocatalysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.