Abstract

In this Letter, we show that the explosive percolation is a novel continuous phase transition. The order-parameter-distribution histogram at the percolation threshold is studied in Erdős–Rényi networks, scale-free networks, and square lattice. In finite system, two well-defined Gaussian-like peaks coexist, and the valley between the two peaks is suppressed with the system size increasing. This finite-size effect always appears in typical first-order phase transition. However, both of the two peaks shift to zero point in a power law manner, which indicates the explosive percolation is continuous in the thermodynamic limit. The nature of explosive percolation in all the three structures belongs to this novel continuous phase transition. Various scaling exponents concerning the order-parameter-distribution are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.