Abstract

The seismic correlation wavefield constructed from the stacked cross-correlograms of the late coda of earthquake signals at stations across the globe provides a wealth of observed pulses as a function of inter-station distance. The interval from 3 to 10 h after the onset of major earthquakes is employed for the period range from 15 to 50 s. The observations can be well matched by synthetic seismograms for a radially stratified Earth. Many of the correlation phases have similar time behaviour to those in the regular wavefield, but others have no correspondence. All such correlation phases can be explained by the interaction of arrivals with a common slowness at the each of the stations being correlated. Using a generalized ray description of the seismic wavefield, the time-distance behaviour of these correlation phases arises from differences in accumulated phase on different propagation paths through the Earth. Distinct arrivals emerge from the correlation field when there are many ways in which combinations of seismic phases can arise with the same difference in propagation legs. The constituents of the late coda are dominated by steeply travelling waves, and in consequence features associated with multiple passages through the whole Earth emerge distinctly, such as high-order multiples of PKIKP .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.