Abstract

Computational and experimental studies reveal two different modes of cation stabilization by the phenylazo group. The first mode involves a relatively weak conjugative interaction with the azo π-bond, while the second mode involves an interaction with the nitrogen nonbonding electrons. The 4-phenylazo group is slightly rate-retarding in the solvolysis of cumyl chloride and benzyl mesylate derivatives but rate-enhancing in the solvolysis of α-CF3 benzylic analogs. The phenylazo group can become a potent electron-donating group in cations such as [Me2C─N═N─Ph]+. Nonbonding electron stabilization can be strong enough to offset the very powerful γ-silyl stabilization. In aromatic cyclopropenium and tropylium cations, the demand for stabilization is quite low, and the mode of phenylazo stabilization reverts back to the less-effective π-stabilization. The solvolysis of cis-4-phenylazo benzyl mesylate is faster than that of trans-4-phenylazo benzyl mesylate. Products formed suggest a stepwise ionization, cation isomerization, and nucleophile capture mechanism. Computational studies indicate a vanishingly small barrier for the isomerization of the cis-cation intermediate to the trans-cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.