Abstract

The basic aspects of cutaneous photosensitization reactions and the mode of therapeutic effectiveness of psoralens and coal tar, the two groups of photosensitizing agents used extensively in the photochemotherapy of psoriasis, have been reviewed. Psoralen-induced skin photosensitization and the therapeutic action of psoralens involve two distinct types of reactions, and these two reactions occur independently of each other and concurrently when the psoralen-treated skin (oral or topical) is exposed to 320 to 400 nm of radiation. The first, type I, is an oxygen-independent reaction and primarily involves photoreaction with DNA; the second, type II, is a sensitized reaction dependent on oxygen and involves the formation of singlet oxygen ((1)O(2)). The photoreactive form of psoralen is its triplet state, and the sites of reaction are (1) the cell membrane of the epidermal, dermal, and endothelial cells; (2) the cytoplasmic constituents, such as enzymes, RNA, lysosomes, etc.; (3) the cell nuclei (DNA and chromatin); and (4) the sensitized production of (1)O(2), which is responsible for cell-membrane damage and vasodilation. The major damage would be initiated by a type I reaction and would be seen in the form of nuclear damage to DNA resulting from the interaction of psoralen with DNA and to a lesser extent with RNA. The skin photosensitization response (erythema, edema, membrane damage, etc.) would result from a type II reaction involving the generation of (l)0(2). Crude coal tar (CCT), widely used in the Goeckerman therapy for psoriasis, also produces type I and type II reactions. The therapeutic and photosensitizing actions of CCT are due to (1) the photoconjugation of the photoreactive ingredients of CCT with DNA, causing inter-strand cross-links; and (2) the production of (1)O(2). CCT is an efficient producer of (1)O(2), more so than 8-methoxypso-ralen, and is responsible for cell-membrane damage and cellular edema.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.