Abstract

Primary carbonaceous material has been identified in submarine basaltic glasses and mantle-derived peridotite nodules from alkali basalts using electron microprobe techniques. In the submarine rocks carbon occurs (1) in quench-produced microcracks in glasses and phenocrysts, (2) in vesicles, where it is preferentially concentrated on the sulfide spherules attached to vesicle walls, and (3) in microcracks and CO 2-rich bubbles in inclusions of glass completely enclosed by phenocrysts. In peridotite nodules carbon exists in intergrain cracks, along grain boundaries, and on the walls of fluid inclusions disposed in two dimensional arrays. The carbonaceous material is believed to consist of a mixture of graphite, other forms of elemental carbon, and possibly small amounts of organic matter. It is suggested that carbon precipitates by disproportionation of CO according to the reaction 2 CO→C+CO 2 and that this reaction is catalyzed by sulfide-oxide surfaces in vesicles. Once deposition has begun, the reaction continues on carbon surfaces as well. Based on the large amounts of condensed carbon observed in some vapor inclusions and the apparent lack of oxidation features associated with them, it is proposed that carbon condensed from a magmatic vapor in which CO was a significant constituent. This implies that oxygen fugacities of undegassed basaltic melts under confining pressures of the shallow crust are typically lower than those of the QFM buffer at equivalent temperatures. This is in agreement with some intrinsic oxygen fugacity measurements on similar undegassed materials. Regardless of the mechanism of its formation, the presence of carbon in CO 2-rich vesicles and inclusions in basaltic glasses and mantle nodules adds uncertainty to estimates of minimum pressures of entrapment based on measurements of fluid densities. Condensed carbon also accounts for some of the carbon isotopic characteristics of these rocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.