Abstract
Targeting death receptor-mediated apoptosis has emerged as an effective strategy for cancer therapy. However, certain types of cancer cells are intrinsically resistant to death receptor-mediated apoptosis. In an effort to identify agents that can sensitize cancer cells to death receptor-induced apoptosis, we have identified honokiol, a natural product with anticancer activity, as shown in various preclinical studies, as an effective sensitizer of death receptor-mediated apoptosis. Honokiol alone moderately inhibited the growth of human lung cancer cells; however, when combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), greater effects on decreasing cell survival and inducing apoptosis than TRAIL alone were observed, indicating that honokiol cooperates with TRAIL to enhance apoptosis. This was also true to Fas-induced apoptosis when combined with Fas ligand or an agonistic anti-Fas antibody. Among several apoptosis-associated proteins tested, cellular FLICE-inhibitory protein (c-FLIP) was the only one that was rapidly down-regulated by honokiol in all of the tested cell lines. The down-regulation of c-FLIP by honokiol could be prevented by the proteasome inhibitor MG132. Moreover, honokiol increased c-FLIP ubiquitination. These results indicate that honokiol down-regulates c-FLIP by facilitating its degradation through a ubiquitin/proteasome-mediated mechanism. Enforced expression of ectopic c-FLIP abolished the ability of honokiol to enhance TRAIL-induced apoptosis. Several honokiol derivatives, which exhibited more potent effects on down-regulation of c-FLIP than honokiol, showed better efficacy than honokiol in inhibiting the growth and enhancing TRAIL-induced apoptosis as well. Collectively, we conclude that c-FLIP down-regulation is a key event for honokiol to modulate the death receptor-induced apoptosis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.