Abstract

The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence of extant organisms from their last universal common ancestor, first emerging in the context of translation-related RNA-interactions and subsequently exploding to occupy various functional niches. Most beta-GF diversification occurred in prokaryotes, with the Ubl clade showing dramatic expansion in the eukaryotes. Diversification of Ubl families in eukaryotes played a major role in emergence of characteristic eukaryotic cellular sub-structures and systems. Recent comparative genomics studies indicate precursors of the eukaryotic Ub-system emerged in prokaryotes. The simplest of these combine an Ubl and an E1-like enzyme in metabolic pathways. Sampylation in archaea and Urmylation in eukaryotes appear to represent recruitment of such systems as simple protein-tagging apparatuses. However, other prokaryotic systems incorporated further components and mirror the eukaryotic condition in possessing an E2, a RING-type E3 or both of these components. Additionally, prokaryotes have evolved conjugation systems independent of Ub ligases, such as the Pup system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call