Abstract

Myricetin (3,3’,4’,5,5’,7-hexahydroxyflavone), a major flavonoid in berries and red wine, has been recently used as a health food supplement based on its antioxidant and antitumor properties. We report here that myricetin preferentially exerts inhibitory effects on gastric H+, K+-ATPase. Myricetin inhibited H+, K+-ATPase with a sub-micromolar IC50 value in an enzyme assay using freeze-dried tubulovesicles prepared from hog stomach. Na+, K+-ATPase and Ca2+-ATPase were also inhibited by myricetin in a dose-dependent manner, but the IC50 values for these enzymes were approximately an order of magnitude higher compared to the H+, K+-ATPase. In structure-inhibitory functional analysis of sixteen myricetin derivatives, several phenolic hydroxy groups attached to the flavonoid backbone were highlighted as essential modifications for the inhibition of P2-type ATPases. Furthermore, oral administration of myricetin significantly attenuated histamine-induced gastric acid secretion in an in vivo mouse assessment. Therefore, myricetin derivatives seem to be useful seed compounds for developing new drugs and supplements to alleviate gastric acid secretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call