Abstract

The naturally-occurring compound, n-butylidenephthalide (BP), which is isolated from the chloroform extract of Angelica sinensis (AS-C), has been investigated with respect to the treatment of angina. In this study, we have examined the anti-tumor effects of n-butylidenephthalide on glioblastoma multiforme (GBM) brain tumors both in vitro and in vivo. In vitro, GBM cells were treated with BP, and the effects of proliferation, cell cycle and apoptosis were determined. In vivo, DBTRG-05MG, the human GBM tumor, and RG2, the rat GBM tumor, were injected subcutaneously or intracerebrally with BP. The effects on tumor growth were determined by tumor volumes, magnetic resonance imaging and survival rate. Here, we report on the potency of BP in suppressing growth of malignant brain tumor cells without simultaneous fibroblast cytotocixity. BP up-regulated the expression of Cyclin Kinase Inhibitor (CKI), including p21 and p27, to decrease phosphorylation of Rb proteins, and down-regulated the cell-cycle regulators, resulting in cell arrest at the G0/G1 phase for DBTRG-05MG and RG2 cells, respectively. The apoptosis-associated proteins were dramatically increased and activated by BP in DBTRG-05MG cells and RG2 cells, but RG2 cells did not express p53 protein. In vitro results showed that BP triggered both p53-dependent and independent pathways for apoptosis. In vivo, BP not only suppressed growth of subcutaneous rat and human brain tumors but also, reduced the volume of GBM tumors in situ, significantly prolonging survival rate. These in vitro and in vivo anti-cancer effects indicate that BP could serve as a new anti-brain tumor drug.

Highlights

  • F Cyclin Kinase Inhibitor (CKI), including p21 and p27, to decrease phosphorylation of Rb proteins, and down-regulated the cell-cycle regulators, resulting in cell arrest at the G0/G1 phase for DBTRG-05MG and RG2 cells, respectively

  • Chemotherapy is usually reserved for recurrent tumors that have already been treated with surgery and radiotherapy, or for tumors in which surgery was only partial or infeasible and the effect of radiotherapy was limited (Blacklock et al 1986; Shapiro and Green 1987)

  • The results revealed that the significant therapeutic anti-tumor efficacy of BP on glioblastoma multiforme (GBM) tumors involved the induction of cell-cycle rest and apoptosis

Read more

Summary

Introduction

F Cyclin Kinase Inhibitor (CKI), including p21 and p27, to decrease phosphorylation of Rb proteins, and down-regulated the cell-cycle regulators, resulting in cell arrest at the G0/G1 phase for DBTRG-05MG and RG2 cells, respectively. BP suppressed growth of subcutaneous rat and human brain tumors and, reduced the volume of GBM tumors in situ, significantly prolonging survival rate. These in vitro and in vivo anti-cancer effects indicate that BP could serve as a new anti-brain tumor drug. The chloroform extract of A. sinensis (AS-C) showed a dramatic anti-tumor effect, causing growth resting and apoptosis of malignant brain tumors in vitro and in vivo, and both p53-dependent and -independent pathways of apoptosis were involved in the cytotoxic mechanisms (Tsai et al 2005). The results revealed that the significant therapeutic anti-tumor efficacy of BP on GBM tumors involved the induction of cell-cycle rest and apoptosis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.