Abstract

BackgroundGlucuronoyl esterases belong to carbohydrate esterase family 15 and catalyze de-esterification. Their natural function is presumed to be cleavage of ester linkages in lignin–carbohydrate complexes particularly those linking lignin and glucuronoyl residues in xylans in hardwood.ResultsHere, we show for the first time a detailed product profile of aldouronic acids released from birchwood lignin by a glucuronoyl esterase from the white-rot fungus Cerrena unicolor (CuGE). CuGE releases substrate for GH10 endo-xylanase which results in significantly increased product release compared to the action of endo-xylanase alone. CuGE also releases neutral xylo-oligosaccharides that can be ascribed to the enzymes feruloyl esterase side activity as demonstrated by release of ferulic acid from insoluble wheat arabinoxylan.ConclusionThe data verify the enzyme’s unique ability to catalyze removal of all glucuronoxylan associated with lignin and we propose that this is a direct result of enzymatic cleavage of the ester bonds connecting glucuronoxylan to lignin via 4-O-methyl glucuronoyl-ester linkages. This function appears important for the fungal organism’s ability to effectively utilize all available carbohydrates in lignocellulosic substrates. In bioprocess perspectives, this enzyme is a clear candidate for polishing lignin for residual carbohydrates to achieve pure, native lignin fractions after minimal pretreatment.

Highlights

  • Glucuronoyl esterases belong to carbohydrate esterase family 15 and catalyze de-esterification

  • All glucuronoyl esterases have been characterized using a limited number of synthetic model substrates and very little is known about the biological function of these esterases

  • Studies on the biological function of glucuronoyl esterases and any possible correlations between proposed groupings based on bioinformatics and functional differences have been hindered by the lack of natural substrates amendable to hydrolysis by this type of enzyme [16]

Read more

Summary

Introduction

Glucuronoyl esterases belong to carbohydrate esterase family 15 and catalyze de-esterification Their natural function is presumed to be cleavage of ester linkages in lignin–carbohydrate complexes those linking lignin and glucuronoyl residues in xylans in hardwood. Similar catalytic activity on low and high molecular mass polymeric methyl esters of glucuronoxylan indicates the potential ability of glucuronoyl esterases to act on large substrates, potentially releasing high molecular weight products. This is supported by the active site being exposed on the surface of the protein [15]. Studies on the biological function of glucuronoyl esterases and any possible correlations between proposed groupings based on bioinformatics and functional differences have been hindered by the lack of natural substrates amendable to hydrolysis by this type of enzyme [16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call