Abstract

Narrow band gaps and excellent ferroelectricity are intrinsically paradoxical in ferroelectrics as the leakage current caused by an increase in the number of thermally excited carriers will lead to a deterioration of ferroelectricity. A new molecular ferroelectric, hexane-1,6-diammonium pentaiodobismuth (HDA-BiI5 ), was now developed through band gap engineering of organic-inorganic hybrid materials. It features an intrinsic band gap of 1.89 eV, and thus represents the first molecular ferroelectric with a band gap of less than 2.0 eV. Simultaneously, low-temperature solution processing was successfully applied to fabricate high-quality ferroelectric thin films based on HDA-BiI5 , for which high-precision controllable domain flips were realized. Owing to its narrow band gap and excellent ferroelectricity, HDA-BiI5 can be considered as a milestone in the exploitation of molecular ferroelectrics, with promising applications in high-density data storage and photovoltaic conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.