Abstract
The reversible and transient photostimulated structural changes in annealed chalcogenide glass (ChG) layers were used to form interference periodic structures on semiconductor surfaces and metal films. It was shown that negative-action etchants based on amines dissolve illuminated parts of a chalcogenide film, i.e., act as positive etchants. The diffraction gratings and 2-D interference structures on germanium ChGs - more environmentally acceptable compounds than traditionally used arsenic chalcogenides - were recorded, and their characteristics were studied.
Highlights
Chalcogenide vitreous semiconductors, or, in other words, chalcogenide glasses (ChGs), attract attention of many researchers owing to widely diverse photoinduced changes in their structure and, as a consequence, in their properties
Investigations performed in situ under exposure to light have shown [4,5] that transient photoinduced structural changes are observed in ChG films
We present the results of investigations of photolithography on annealed GhG layers, i.e., photolithography that is based on the reversible and transient photochanges in GhGs
Summary
Chalcogenide vitreous semiconductors, or, in other words, chalcogenide glasses (ChGs), attract attention of many researchers owing to widely diverse photoinduced changes in their structure and, as a consequence, in their properties (optical characteristics, conductivity, solubility in selective etchants, and even mechanical characteristics). These modifications serve as a basis for the practical use of ChGs as inorganic photoresists, media for optical and electrical information recording, as well as other applications. Investigations performed in situ under exposure to light have shown [4,5] that transient photoinduced structural changes are observed in ChG films. It was previously shown that all these modifications (reversible, irreversible, and transient) result in changes of ChG solubility in some solutions and can serve as a base for photoresist process in ChGs [6,7,8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.