Abstract

Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.

Highlights

  • Metal-organic frameworks (MOFs) are a class of crystalline coordination polymers possessing potential voids

  • We demonstrate the photodynamic activity of these nanoICR-2/porphyrin composites on HeLa cells

  • Various organic solvents and temperatures were screened for the successful preparation of nanoICR-2

Read more

Summary

Introduction

Metal-organic frameworks (MOFs) are a class of crystalline coordination polymers possessing potential voids. Their structures combine inorganic nodes, metal centres forming so-called secondary building units (SBU), with organic linkers. The diversity of possible SBUs coupled with organic linkers of variable geometry enables the preparation of a large number of structures with tuneable pore sizes, topologies, and chemical nature [1,2]. Ties such as luminescence and photosensitization of singlet oxygen, O2(1∆g), are attractive [3,4,5]. Singlet oxygen is a short-lived, highly oxidative species with bactericidal and virucidal properties [6]. The cytotoxic effect can be intentionally employed in anticancer treatment in the form of photodynamic therapy (PDT) [7,8]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.