Abstract

.This study successfully simulated the single crystal copper nanocutting by a rigid body /elastic tools with nose radius at the nitrogen gas environment using molecular dynamics, and analyzed the workpiece temperature distribution and dislocation during nanocutting. After simulations, it can be found that when cutting with the elastic body tool, the tool itself was still distorted slightly, however, the cutting results of the elastic tool and the rigid body tool of the tool are not the same. The chip temperature was highest near the central rake and nose.The workpiece temperature when the elastic body tool cutting was lower; the temperature in the nose and rake plane is the highest, the more away from the nose, the lower the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.