Abstract

We have measured the hyperfine structure of mutually perturbing rovibrational levels of the 1(b) 3Pi0 and 2(A) 1Sigma+ states of the NaK molecule, using the perturbation-facilitated optical-optical double resonance method with copropagating lasers. The unperturbed 1(b) 3Pi0 levels are split into four hyperfine components by the Fermi contact interaction bFIS. Mixing between the 1(b) 3Pi0 and 2(A) 1Sigma+ levels imparts hyperfine structure to the nominally singlet component of the perturbed levels and reduces the hyperfine splitting of the nominally triplet component. Theoretical analysis relates these observations to the hyperfine splitting that each 1(b) 3Pi0 level would have if it were not perturbed by a 2(A) 1Sigma+ level. Using this analysis, we demonstrate that significant hyperfine splitting arises because the 1(b) 3Pi0 state cannot be described as pure Hund's case (a). We determine bF for the 1(b) 3Pi0 levels and also a more accurate value for the magnitude of the singlet-triplet spin-orbit coupling HSO=[1(b) 3Pi0(vb,J)(H(SO))2(A) 1Sigma+(vA,J). Using the known spectroscopic constants of the 1(b) 3Pi state, we obtain bF=0.009 89+/-0.000 27 cm(-1). The values of (H(SO)) are found to be between 2 and 3 cm(-1), depending on vb, vA, and J. Dividing (H(SO)) by calculated vibrational overlap integrals, and taking account of the 1(b) 3Pi(Omega) rotational mixing, we can determine the magnitude of the electronic part H(el) of H(SO). Our results yield (H(el))=(16.33+/-0.15) cm(-1), consistent with our previous determinations using different techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call