Abstract
All the relevant literature reports indicate that net rates of salt and water absorption and cell membrane potentials (Vb) are lower, but intracellular Na+ concentration is higher in rabbit renal proximal tubule in vitro than in rat proximal tubule in vivo. Since the different driving forces should influence basolateral Na(+)-HCO3- cotransport we have studied the operation of the cotransporter in isolated rabbit renal proximal tubule in vitro with special emphasis on the stoichiometry of flux coupling (q). Using conventional and ion-selective intracellular microelectrodes three series of experiments were performed: (a) we determined the Vb response to a 2:1 reduction of bath HCO3- or Na+ concentration, (b) we determined initial efflux rates of HCO3- or Na+ ions in response to a sudden 10:1 reduction of bath HCO3- concentration, and (c) we collapsed the tubules and determined electrochemical driving forces of Na+ and HCO3- across the basolateral cell membrane under conditions approaching zero net flux in the control state in the presence of Ba2+- and in Cl(-)-free solutions. All measurements concurrently yielded a coupling ratio of approximately two HCO3- ions to one Na+ ion (q = 2). This result contrasts with the ratio q = 3, which we have previously observed in similar experiments on rat renal proximal tubule in vivo [Yoshitomi et al. (1985) Pflügers Arch 405:360] and which was also observed on rabbit renal basolateral cell membrane vesicles in vitro [Soleimani et al. (1987) J Clin Invest 79:1276].(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.