Abstract

Abstract The Na–H system thermodynamic properties were assessed using Gibbs free energy model parameters obtained from best fit optimizations to combined experimental and first-principles predicted data. The first-principles finite temperature thermodynamic property predictions, based upon density functional theory ground state minimizations and direct method lattice dynamics, were used to supplement the Na–H dataset wherever experimental information was unavailable or unattainable. The predictions proved to be important for extending the evaluation of the heat capacity of the stable NaH phase to cover the complete 0 – 2000 K temperature range. The predicted thermodynamic properties of the hypothetical NaH3 end-member representing complete interstitial H substitution in solid body-centered cubic Na, provided a physical basis for modeling H dissolution in the Na lattice. The modeling also showed satisfactory agreement with experimental measurements of NaH enthalpies of formation, NaH decomposition pressures, and H solubility in liquid Na.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.