Abstract

An electrophysiological correlate of attentional target selection processes in touch (N2cc component) has recently been discovered in lateralized tactile working memory experiments. This tactile N2cc emerges at the same time as the visual N2pc component but has a different modality-specific topography over central somatosensory areas. Here, we investigated links between N2cc components and the space-based versus feature-based attentional selection of task-relevant tactile stimuli. On each trial, a pair of tactile items was presented simultaneously to one finger on the left and right hand. Target stimuli were defined by their location (e.g., left index finger; Spatial Attention Task), by a nonspatial feature (continuous vs. pulsed; Feature-Based Attention Task), or by a combination of spatial and nonspatial features (Conjunction Task). Reliable N2cc components were observed in all three tasks. They emerged considerably earlier in the Spatial Attention Task than in the Feature-Based Attention Task, suggesting that space-based selection mechanisms in touch operate faster than feature-guided mechanisms. The temporal pattern of N2cc components observed in the Conjunction Task revealed that space-based and feature-based attention both contributed to target selection, which was initially driven primarily by spatial location. Overall, these findings establish the N2cc component as a new electrophysiological marker of the selective attentional processing of task-relevant stimuli in touch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.