Abstract
Let D be a bounded symmetric domain of tube type and Σ be the Shilov boundary of D. Denote by H2(D) and A2(D) the Hardy and Bergman spaces, respectively, of holomorphic functions on D; and let B(H2(D)) and B(A2(D)) denote the closed unit balls in these spaces. For an integer l⩾0 we define the notion Rlf of the lth radial derivative of a holomorphic function f on D, and we prove the following results: Let 0<ρ<1. Denote by W the class of holomorphic functions f on D for which Rlf∈B(H2(D)) and set X=C(ρΣ). Then we show that the linear and Gelfand N-widths of W in X coincide, and we compute the exact value. We do the same for the case in which W is the class of holomorphic functions f for which Rlf∈B(A2(D)), and X=C(ρΣ). Next, let X=Lp(ρΣ) (respectively, Lp(ρD)) for 1⩽p⩽∞, and let W be a class of holomorphic functions f on D for which Rlf∈B(Hp(D)) (respectively, B(Ap(D))). We show that the Kolmogorov, linear, Gelfand, and Bernstein N-widths all coincide, we calculate the exact value, and we identify optimal subspaces or optimal linear operators. These results extend work of Yu. A. Farkov (1993, J. Approx. Theory75, 183–197) and K. Yu. Osipenko (1995, J. Approx. Theory82, 135–155), and initiate the study of N-widths of spaces of holomorphic functions on bounded symmetric domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.