Abstract

The eukaryotic MutS homolog complexes, Msh2-Msh6 and Msh2-Msh3, recognize mismatched bases in DNA during mismatch repair (MMR). The eukaryote-specific N-terminal regions (NTRs) of Msh6 and Msh3 have not been characterized other than by demonstrating that they contain an N-terminal PCNA-interacting motif. Here we have demonstrated genetically that the NTR of Msh6 has an important role in MMR that is partially redundant with PCNA binding. Small-angle X-ray scattering (SAXS) was used to determine the solution structure of the complex of PCNA with Msh2-Msh6 and with the isolated Msh6 NTR, revealing that the Msh6 NTR is a natively disordered domain that forms an extended tether between Msh6 and PCNA. Moreover, computational analysis of PCNA-interacting motifs in the S. cerevisiae proteome indicated that flexible linkers are a common theme for PCNA-interacting proteins that may serve to localize these binding partners without tightly restraining them to the immediate vicinity of PCNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.