Abstract
Chemical cross-linking combined with site-directed mutagenesis was used to evaluate the role of extracellular cysteines and their positions relative to the binding site for the agonist bradykinin (BK) in the human BK B2 receptor. All extracellular cysteines, Cys20, Cys103, Cys184, and Cys277, in the receptor were mutated to serines, and single and double mutants were transfected into COS-7 cells. The Ser20 and Ser277 single mutants and the Ser20/Ser277 double mutant bound [3H]BK and the antagonist [3H]NPC17731 with pharmacological profiles identical to the wild-type B2 receptor. In contrast, the Ser103 and Ser184 single mutants were unable to bind either of the two radioligands. However, these mutants were still expressed as determined by immunoblotting with anti-B2 receptor antibodies. Previous studies on the bovine B2 receptor showed that bifunctional reagents, which are reactive to amines at one end and to free sulfhydryls in the opposite end, cross-link the N terminus of receptor-bound BK to a sulfhydryl in the receptor (Herzig, M. C. S., and Leeb-Lundberg, L. M. F. (1995) J. Biol. Chem. 270, 20591-20598). Here, we show that m-maleimidobenzoyl-N-hydroxysuccinimide ester and 1,5-difluoro-2, 4-dinitrobenzene cross-linked BK to the wild-type human B2 receptor and the Ser20 and Ser277 single mutant receptors, whereas these reagents were unable to cross-link BK to the Ser20/Ser277 double mutant. These results show that Cys103 and Cys184 are both required for expression of high affinity agonist and antagonist binding sites in the human B2 receptor, while Cys20 and Cys277 are not required. Furthermore, the results provide direct biochemical evidence that the N terminus of BK, when bound to the B2 receptor, is adjacent to Cys277 in extracellular domain 4 and Cys20 in extracellular domain 1 of the receptor.
Highlights
BK1 (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg), a member of a family of potent vasoactive peptides called kinins, acts through BK B2 receptors [1, 2]
We analyzed the role of the four cysteines located on the extracellular surface of the BK B2 receptor and their positioning relative to the N terminus of BK when bound to the receptor
Our results show that Cys103 in EC-II and Cys184 in EC-III are essential for formation of high affinity agonist and antagonist binding sites in the receptor, while Cys20 in the extracellular domain 1 (EC-I) and Cys277 in EC-IV are not essential
Summary
BK1 (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg), a member of a family of potent vasoactive peptides called kinins, acts through BK B2 receptors [1, 2]. Chemical cross-linking combined with site-directed mutagenesis was used to evaluate the role of extracellular cysteines and their positions relative to the binding site for the agonist bradykinin (BK) in the human BK B2 receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.