Abstract

Previous results from our laboratory have shown that phosphorylation of type VI adenylyl cyclase (ACVI) by protein kinase C (PKC) caused suppression of adenylyl cyclase activity. In the present study, we investigated the role of the N terminus cytosolic domain of ACVI in this PKC-mediated inhibition of ACVI. Removal of amino acids 1 to 86 of ACVI or mutation of Ser(10) (a potential PKC phosphorylation site) into alanine significantly relieved the PKC-mediated inhibition and markedly reduced the PKC-evoked protein phosphorylation. PKC also effectively phosphorylated a recombinant N terminus cytosolic domain (amino acids 1-160) protein of ACVI and a synthetic peptide representing Ser(10). In addition, the amino acids 1 to 86 truncated mutant exhibited kinetic properties similar to those of the wild type. Taken together, these data demonstrate that the highly variable N terminus cytoplasmic domain of ACVI is a regulatory domain with a critical role in PKC-mediated suppression, which is a hallmark of this adenylyl cyclase isozyme. In addition, Ser(10) was found to serve as an acceptor for the PKC-mediated phosphorylating transfer of ACVI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.