Abstract

The human pathogen Trichomonas vaginalis harbors hydrogenosomes, organelles of mitochondrial origin that generate ATP through hydrogen-producing fermentations. They contain neither genome nor translation machinery, but approximately 500 proteins that are imported from the cytosol. In contrast to well-studied organelles like Saccharomyces mitochondria, very little is known about how proteins are transported across the two membranes enclosing the hydrogenosomal matrix. Recent studies indicate that-in addition to N-terminal transit peptides-internal targeting signals might be more common in hydrogenosomes than in mitochondria. To further characterize the extent to which N-terminal and internal motifs mediate hydrogenosomal protein targeting, we transfected Trichomonas with 24 hemagglutinin (HA) tag fusion constructs, encompassing 13 different hydrogenosomal and cytosolic proteins of the parasite. Hydrogenosomal targeting of these proteins was analyzed by subcellular fractionation and independently by immunofluorescent localization. The investigated proteins include some of the most abundant hydrogenosomal proteins, such as pyruvate ferredoxin oxidoreductase (PFO), which possesses an amino-terminal targeting signal that is processed on import into hydrogenosomes, but is shown here not to be required for import into hydrogenosomes. Our results demonstrate that the deletion of N-terminal signals of hydrogenosomal precursors generally has little, if any, influence upon import into hydrogenosomes. Although the necessary and sufficient signals for hydrogenosomal import recognition appear complex, targeting to the organelle is still highly specific, as demonstrated by the finding that six HA-tagged glycolytic enzymes, highly expressed under the same promoter as other constructs studied here, localized exclusively to the cytosol and did not associate with hydrogenosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.