Abstract

The association of the prion protein (PrP) with sphingolipid- and cholesterol-rich lipid rafts is instrumental in the pathogenesis of the neurodegenerative prion diseases. Although the glycosylphosphatidylinositol (GPI) anchor is an exoplasmic determinant of raft association, PrP remained raft-associated in human neuronal cells even when the GPI anchor was deleted or substituted for a transmembrane anchor indicating that the ectodomain contains a raft localization signal. The raft association of transmembrane-anchored PrP occurred independently of Cu(II) binding as it failed to be abolished by either deletion of the octapeptide repeat region (residues 51-90) or treatment of cells with a Cu(II) chelator. Raft association of transmembrane-anchored PrP was only abolished by the deletion of the N-terminal region (residues 23-90) of the ectodomain. This region was sufficient to confer raft localization when fused to the N terminus of a non-raft transmembrane-anchored protein and suppressed the clathrin-coated pit localization signal in the cytoplasmic domain of the amyloid precursor protein. These data indicate that the N-terminal region of PrP acts as a cellular raft targeting determinant and that residues 23-90 of PrP represent the first proteinaceous raft targeting signal within the ectodomain of a GPI-anchored protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.