Abstract

Regulators of G-protein signalling (RGS) are a family of proteins that interact with G-proteins to regulate negatively G-protein coupled receptor (GPCR) signalling. In addition to a conserved core domain that is necessary and sufficient for their GTPase activating protein (GAP) like activity, RGSs possess N- and C-terminal motifs that confer distinct functional differences. In order to identify the role of the non-RGS region of human RGS1, we have characterized a series of fusions between RGS1 and GFP in a yeast mutant lacking the RGS containing SST2 gene. Using both halo assays as well as a GPCR responsive FUS1-LacZ reporter gene, we demonstrate that a RGS1–GFP fusion inhibits GPCR signalling in yeast while GFP fusions containing either the N-terminus non RGS sequence of RGS1 1–68 or the sequence containing the RGS box of RGS1 68–197 produce proteins that retain RGS1 activity. These results suggest that both the N-terminal and the RGS box of RGS1 function to inhibit signalling. Analysis of a series of mutants spanning the entire N-terminal non-RGS region of RGS1 produced by conservative segment exchange (CSE) mutagenesis showed little loss of function in yeast. This suggests that the overall structure of the N-terminal region of RGS1 rather than specific motifs or residues is required for its function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.