Abstract

Stem-loop binding protein (SLBP) is a 31 kDa protein that is central to the regulation of histone mRNAs and is highly conserved in metazoans. In vertebrates, the N-terminal domain of SLBP has sequence determinants necessary for histone mRNA translation, SLBP degradation, cyclin binding, and histone mRNA import. We have used high-resolution NMR spectroscopy and circular dichroism to characterize the structural and dynamic features of this domain of SLBP from Drosophila (dSLBP). We report that the N-terminal domain of dSLBP is stably unfolded but has nascent helical structure at physiological pH and native-like solution conditions. The conformational and dynamic properties of the isolated domain are mimicked in a longer 175-residue region of the N-terminus, as well as in the full-length protein. Complete resonance assignments, secondary structure propensity, and motional properties of a 91-residue N-terminal domain (G17-K108) of dSLBP are reported here. The deviation of (1)H(alpha), (13)C(alpha), and (13)C(beta) chemical shifts from random coil reveals that there are four regions between residues I28-A45, S50-L57, S66-G75, and F91-N96 that have helical propensity. These regions also have small but positive heteronuclear NOEs, interresidue d(NN) NOEs, and small but significant protection from solvent exchange. However the lack of medium- and long-range NOEs in 3D (15)N- and (13)C-edited spectra, fast amide proton exchange rates (all greater than 1 s(-1)), and long (15)N relaxation (T(1), T(2)) times suggest that the domain from dSLBP does not adopt a well-defined tertiary fold. The backbone residual dipolar couplings (RDCs) for this domain are small and lie close to 0 Hz (+/-2 Hz) for most residues with no well-defined periodicity. The implications of this unfolded state for the function of dSLBP in regulating histone metabolism are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.