Abstract
Plants acclimate to variations in light intensity by changing the antenna size of photosystems. This acclimation allows them to undergo efficient photosynthesis and creates a protective strategy to minimize photodamage. Chlorophyll b synthesis by chlorophyllide a oxygenase (CAO) is a key regulatory step in the control of antenna size. Recently, we found that higher plant CAOs consist of three domains (A, B, and C domains) and confirmed that the C domain possesses catalytic function. To investigate the function of the A domain, we fused various combinations of these three domains with green fluorescent protein (GFP) and introduced them into Arabidopsis thaliana. When a full-length CAO-GFP fusion protein was introduced into a chlorophyll b-less chlorina1-1 mutant, chlorophyll b accumulated to almost the same levels as in the chlorophyll b-containing Columbia wild type, but the CAO-GFP could not be detected by immunoblotting. By contrast, when a GFP-C domain fusion was introduced into chlorina1-1 or Columbia wild type, a large amount of GFP-C domain protein accumulated and the chlorophyll a/b ratio decreased drastically from 3.6 to 2.2 in Columbia wild type. When an A domain-GFP was introduced into Columbia wild type, A domain-GFP levels were very low. Conversely, a large amount of the protein accumulated when it was introduced into the chlorina1-1 mutant. These results indicate that the A domain may sense the presence of chlorophyll b and regulate the accumulation of CAO protein in the chloroplasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.