Abstract

A well-known theorem of Buchweitz provides equivalences between three categories: the stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy category of acyclic complexes of projectives, and the singularity category. To adapt this result to N-complexes, one must find an appropriate candidate for the N-analogue of the stable category. We identify this “N-stable category” via the monomorphism category and prove Buchweitz’s theorem for N-complexes over a Grothendieck abelian category. We also compute the Serre functor on the N-stable category over a self-injective algebra and study the resultant fractional Calabi–Yau properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.