Abstract

NMDA receptor (NMDAR) activity has been strongly implicated in both in vitro and in vivo learning models and the decline in cognitive function associated with aging and is linked to a decrease in NMDAR functional expression. GLYX-13 is a tetrapeptide (Thr-Pro-Pro-Thr) which acts as a NMDAR receptor partial agonist at the glycine site. GLYX-13 was administered to young adult (3 months old) and aged (27-32 months old) Fischer 344 X Brown Norway F1 rats (FBNF1), and behavioral learning tested in trace eye blink conditioning (tEBC), a movable platform version of the Morris water maze (MWM), and alternating t-maze tasks. GLYX-13 (1mg/kg, i.v.) enhanced learning in both young adult and aging animals for MWM and alternating t-maze, and increased tEBC in aging rats. We previously showed optimal enhancement of tEBC in young adult rats given GLYX-13 at the same dose. Of these learning tasks, the MWM showed the most robust age related deficit in learning. In the MWM, GLYX-13 enhancement of learning was greater in the old compared to the young adult animals. Examination of the induction of long-term potentiation (LTP) and depression (LTD) at Schaffer collateral-CA1 synapses in hippocampal slices showed that aged rats showed marked, selective impairment in the magnitude of LTP evoked by a sub-maximal tetanus, and that GLYX-13 significantly enhanced the magnitude of LTP in slices from both young adult and aged rats without affecting LTD. These data, combined with the observation that the GLYX-13 enhancement of learning was greater in old than in young adult animals, suggest that GLYX-13 may be a promising treatment for deficits in cognitive function associated with aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.