Abstract
Magnaporthe oryzae is the causal agent of rice blast. Glycosylation plays key roles in vegetative growth, development, and infection of M. oryzae. However, several glycosylation-related genes have not been characterized. In this study, we identified a Glyco_transf_22 domain-containing protein, MoAlg9, and found that MoAlg9 is localized to the endoplasmic reticulum (ER). Deletion of MoALG9 significantly affected conidial production, normal appressorium formation, responses to stressors, and pathogenicity of M. oryzae. We also found that the ΔMoalg9 mutant was defective in glycogen utilization, appressorial penetration, and invasive growth in host cells. Moreover, we further demonstrated that MoALG9 regulates the transcription of several target genes involved in conidiation, appressorium formation, and cell-wall integrity. In addition, we found that the Glyco_transf_22 domain is essential for normal MoAlg9 function and localization. We also provide evidence that MoAlg9 is involved in N-glycosylation pathway in M. oryzae. Taken together, these results show that MoAlg9 is important for conidiation, appressorium formation, maintenance of cell wall integrity, and the pathogenesis of M. oryzae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.