Abstract

N-terminal acetylation (Nt-acetylation) refers to the acetylation of the free α-amino group at the N-terminus of a polypeptide. While the effects of Nt-acetylation are multifaceted, its most known function is in the acetylation-dependent N-end rule protein degradation pathway (Ac/N-end rule pathway), where Nt-acetylation is recognized as a degron by designated E3 ligases, eventually leading to target degradation by the ubiquitin-proteasome system. Naa10 is the catalytic subunit of the major Nt-acetylation enzyme NatA, which Nt-acetylates proteins whose second amino acid has a small side chain. In humans, NAA10 is the responsible mutated gene in Ogden syndrome and is thought to play important roles in development. However, it is unclear how the Ac/N-end rule pathway affects the differentiation ability of mouse embryonic stem cells (mESCs). We hypothesized that the balance of pluripotency factors may be maintained by the Ac/N-end rule pathway. Thus, we established Naa10 knockout mESCs to test this hypothesis. We found that Naa10 deficiency attenuated differentiation towards the epiblast lineage, deviating towards primitive endoderm. However, this was not caused by disturbing the balance of pluripotency factors, rather by augmenting FGF/MAPK signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.