Abstract
N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase highly expressed in macrophages and B lymphocytes, catalyzes the degradation of palmitoylethanolamide. Palmitoylethanolamide is an agonist of PPAR-α and an important regulator of pain and innate immunity. In this study, we investigated the properties of the NAAA inhibitor, ARN077, in a mouse model of allergic contact dermatitis. Acute topical applications of ARN077 attenuated key signs of DNFB-induced dermatitis in a dose-dependent manner. Moreover, ARN077 increased tissue palmitoylethanolamide content and normalized circulating levels of cytokines and immunoglobulin E. No such effect was seen in PPAR-α-deficient mice. Moreover, mice lacking NAAA failed to develop edema or scratching behavior after challenge with DNFB, confirming that this enzyme plays an important role in dermatitis. Consistent with this conclusion, subchronic applications of ARN077 suppressed DNFB-induced inflammation when administered either before or after the DNFB challenge. The effects of subchronic ARN077 were dose dependent and comparable in size to those produced by the steroids clobetasol and dexamethasone. Unlike the latter, however, ARN077 did not cause skin atrophy. The results identify NAAA as a promising target for the development of effective and safe treatments for atopic dermatitis and other inflammatory disorders of the skin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.