Abstract

A pathogenicity island within the genome of a multi-host plant bacterium, Pseudomonas cichorii strain SPC9018, comprises the hrp genes encoding a type III secretion system and the pat gene encoding an N-acetyltransferase proposed to play a role in virulence. However, the function of the N-acetyltransferase remains poorly characterized. Interestingly, limiting the iron condition using a phytosiderophore, mugineic acid, resulted in reduced virulence of strain SPC9018 on respective host plants, including eggplant, similar to the reduced virulence observed with a pat gene-deletion mutant. Spectroscopic analyses showed that the pat deletion reduced the concentration of pyoverdine, which is the main siderophore produced by strain SPC9018, leading to a reduction in pyoverdine-mediated iron acquisition. Furthermore, the pat gene deletion mutant showed enhanced expression of the fecA, pvdL, and pvdR genes, whose expression is induced under deficient siderophore-mediated iron uptake. The pat-deletion mutant showed a hyper-swarming phenotype, and the addition of iron decreased this swarming motility. The pat deletion also reduced the adhesion ability of the bacteria, similar to the effect of iron-limited conditions. Furthermore, deletion of the pat gene enhanced expression of the hrp genes. These findings suggested that the pat gene encoding the N-acetyltransferase may be implicated in iron acquisition, contributing to host specificity of P. cichorii strain SPC9018 and its virulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call