Abstract

The formation of cyanobacterial heterocysts is unique in the prokaryotic world: it is the only irreversible collective process. This terminal differentiation resembles senescence and differentiation in the eukaryotic urkingdom. During their cell cycle eukaryotic cells at the restriction point may reversibly proceed from a vegetative phase (G1) into a quiescent state (G0), and then may irreversibly enter the way towards differentiated or senescent cells. In parallel, at commitment point 1 vegetative cells from filamentous cyanobacteria may reversibly form proheterocysts, and then may proceed irreversibly towards mature heterocysts at commitment point 2. While the signals paving the path for differentiation or senescence in eukaryotes are largely unknown, heterocyst development is clearly triggered by nitrogen starvation. The reasons for the irreversibility in both systems are poorly understood. We discuss these questions, especially in the light of recent advances in the molecular biology of cyanobacteria, with emphasis on self‐stabilizing autocatalytic cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call