Abstract

Guanylate cyclase-activating proteins (GCAPs) are Ca 2+-binding proteins with a fatty acid (mainly myristic acid) that is covalently attached at the N terminus. Myristoylated forms of GCAP were produced in E. coli by coexpression of yeast N-myristoyl-transferase. Proteins with nearly 100% degree of myristoylation were obtained after chromatography on a reversed phase column. Although proteins were denatured by this step, they could be successfully refolded. Nonmyristoylated GCAPs activated bovine photoreceptor guanylate cyclase 1 less efficiently than the myristoylated forms. Maximal activity of guanylate cyclase at low Ca 2+-concentration decreased about twofold, when GCAPs lacked myristoylation. In addition, the x-fold activation of cyclase was lower with nonmyristoylated GCAPs. Myristoylation of GCAP-2 had no influence on the apparent affinity for photoreceptor guanylate cyclase 1, but GCAP-1 has an about sevenfold higher affinity for cyclase, when it is myristoylated. We conclude that myristoylation of GCAP-1 and GCAP-2 is important for fine tuning of guanylate cyclase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.