Abstract

Optical trapping technology now allows investigators in the motility field to measure the forces generated by single motor molecules. A handful of research groups have exploited this approach to further develop our understanding of the actin-based motor, myosin, an ATPase that is capable of converting chemical energy into mechanical work during a cyclical interaction with filamentous actin. In this regard, myosin-II from muscle is the most well-characterized myosin superfamily member. By combining the data obtained from optical trap assays with that from ensemble biochemical and mechanical assays, this review discusses the fundamental properties of the myosin-II power stroke and, perhaps more significantly, how these properties are governed by this molecule's atomic structure and the biochemical transitions that define its catalytic cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call