Abstract

Force impulse is thought to be generated in muscle when myosin head (S-1), while weakly bound to actin filament, undergoes orientational change to form a strong (rigor) bond with actin. There is ample evidence that this bond involves interaction of 1 myosin head with 1 actin monomer. However, X-ray diffraction data of muscle decorated with S-1, as well as recently proposed model of the thin filaments, suggested that each S-1 molecule interacted with two actin monomers. We reinvestigated this controversy and found that the stoichiometry of acto-S-1 bond depended on the relative amounts of actin and myosin present during titrations: when increasing amounts of actin were added to a fixed amount of S-1 (i.e. when myosin heads were initially in excess over actin), the saturating stoichiometry was 1 mol of S-1 per 1 mol of actin. However, when increasing amounts of S-1 were added slowly to a fixed amount of F-actin (i.e. when actin was initially in excess over S-1), the stoichiometry at saturation was 1 mol of S-1 per 2 mols of actin. The ability of S-1 to bind either one or two actin monomers suggests a way that force could be generated during muscle contraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.