Abstract
A mixture of two peptides of approximately M(r) 13000 has been isolated from a papain digest of LC2 deficient myosin. The peptides assemble into highly ordered aggregates which in one view are made up of strands of pairs of dots with an average side to side spacing of 13.0 nm and an average axial repeat of 9.0 nm. In another view there are strands of single dots with a side-to-side spacing of 7.8 nm and an axial repeat of 9.1 nm. From N-terminal peptide sequencing, the two peptides have been shown to come from regions of the myosin rod displaced by 195 residues. We have shown that either peptide alone can assemble to form the same aggregates. The 195 residue displacement of the M(r) 13000 peptides corresponds closely to the 196 residue repeat of charges along the myosin rod. This finding permits us to designate 195 residue segments of the myosin rod and to relate assembly characteristics directly to the similar 195 residue segments and 196 residue charge repeat. The most C-terminal 195 residue segment carries information for assembly into helical strands. The contiguous 195 residue segment, in major part, carries information for the unipolar assembly, characteristic of the assembly in each half of the myosin filament. The next contiguous 195 residue segment, in major part, carries information for bipolar assembly which is characteristic of the bare zone region of the filament; and for the transition from the bipolar bare zone to unipolar assembly. The effect of the eight C-terminal residues of the myosin rod on the assembly of the contiguous 195 residues has also been studied. The entire fragment of 195 + eight C-terminal residues assembled to form helical strands with an axial repeat of 30 nm. Successive deletion of charged residues changed the axial repeat of the helical strands suggesting that the charged residues at the C-terminus are involved in determining the pitch in the helical assembly of the contiguous 195 residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.