Abstract

Interactions between microtubules and filamentous actin (F-actin) are essential to many cellular processes, but their mechanisms are poorly understood. We investigated possible roles of the myosin family of proteins in the interactions between filamentous actin (F-actin) and microtubules of budding yeast Saccharomyces cerevisiae with the general myosin ATPase inhibitor 2,3-butanedione-2-monoxime (BDM). The growth of S. cerevisiae was completely inhibited by BDM at 20 mmol/L and the effect of BDM on cell growth was reversible. In more than 80% of BDM-treated budding yeast cells, the polarized distribution of F-actin was lost and fewer F-actin dots were observed. When cells were synchronized in G1 with alpha-factor and released in the presence of BDM, cell number did not increase and cells were mainly arrested in G1 DNA content without any bud, suggesting that myosin activity is required for new bud formation and the start of a new cell cycle. More than 10% of the BDM-treated cells also revealed defects in nuclear migration to the bud neck as well as in nuclear shape. Consistent with these defects, the orientation of mitotic spindles was random in the 57% of cells treated with 20 mmol/L BDM and immunostained with anti-tubulin antibody. Furthermore, microtubule structures were completely disorganized in most of the cells incubated in 50 mmol/L BDM, while similar amounts of tubulin proteins were present in both BDM-treated and untreated cells. These results show that the general myosin inhibitor BDM disorganizes microtubule structures as well as F-actin, and suggest that BDM-sensitive myosin activities are necessary for the interaction of F-actin and microtubules to coordinate polarized bud growth and the shape and migration of the nucleus in S. cerevisiae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.