Abstract
Simple SummaryIrisin is a recently discovered protein, mainly produced in the muscle tissue, whose action is proving effective in many other tissues. The crosstalk between muscle and bone has been long since demonstrated, and physical activity has shown to have an impressive positive effect in both tissues. Irisin production increases with exercising and drops with sedentariness and aging, indicating that the molecule is involved in sarcopenia and in bone mass reduction. Although skeleton is target of irisin, its mechanism of action on bone cells has not yet been completely elucidated. The aim of this work is to analyze the effect of irisin on osteoblast differentiation; to this purpose, we used a stem cell model reproducing the osteoblastogenesis and the bone-forming processes. We performed an in vitro study exploring the main osteoblast markers in the presence of irisin. We found that irisin has an impressive effect on the most peculiar osteoblast feature: the bone mineral matrix secretion process. Moreover, irisin demonstrated an inductive effect on osteoblast osteocalcin production. Both results suggest a stimulating effect of irisin in bone formation. The association we observed between irisin addition and osteoblast osteocalcin production should be further investigated.The myokine irisin, well known for its anabolic effect on bone tissue, has been demonstrated to positively act on osteoblastic differentiation processes in vitro. Mesenchymal stem cells (MSCs) have captured great attention in precision medicine and translational research for several decades due to their differentiation capacity, potent immunomodulatory properties, and their ability to be easily cultured and manipulated. Dental bud stem cells (DBSCs) are MSCs, isolated from dental tissues, that can effectively undergo osteoblastic differentiation. In this study, we analyzed, for the first time, the effects of irisin on DBSC osteogenic differentiation in vitro. Our results indicated that DBSCs were responsive to irisin, showed an enhanced expression of osteocalcin (OCN), a late marker of osteoblast differentiation, and displayed a greater mineral matrix deposition. These findings lead to deepening the mechanism of action of this promising molecule, as part of osteoblastogenesis process. Considering the in vivo studies of the effects of irisin on skeleton, irisin could improve bone tissue metabolism in MSC regenerative procedures.
Highlights
Mesenchymal stem cells (MSCs) are extensively used as a therapeutic resource in modern medicine; they are self-renewable and can differentiate into all cell lineages that form mesenchymal and connective tissues
Dental tissues such as dental pulp, apical papilla, and periodontal ligament are recognized as a good source of MSCs; in particular, dental pulp is a connective tissue with an abundance of stem cells in the perivascular niche, which is similar to the embryonal mesenchyme [7,8]
Extracellular Signal-Regulated Kinase (ERK) Phosphorylation in Dental bud stem cells (DBSCs) Treated with Irisin
Summary
Mesenchymal stem cells (MSCs) are extensively used as a therapeutic resource in modern medicine; they are self-renewable and can differentiate into all cell lineages that form mesenchymal and connective tissues. Stem cell populations present in the bone marrow are the most studied MSCs; other possible alternatives reside in many different parts of the organism, such as adipose tissue, as well as brain, liver, and dental tissues [6]. Dental tissues such as dental pulp, apical papilla, and periodontal ligament are recognized as a good source of MSCs; in particular, dental pulp is a connective tissue with an abundance of stem cells in the perivascular niche, which is similar to the embryonal mesenchyme [7,8]. The dental papilla, which we find in the mesenchymal part of the DB, contains a very large number of MSCs, more than the dental pulp; these cells express the characteristic mesenchymal stem markers and demonstrate an impressive osteoblastic phenotype [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.