Abstract

Recently, patients with chronic demyelinating neuropathies have demonstrated significant abnormalities in their multiple nerve excitability properties measured by a non-invasive threshold tracking technique. In order to expand our studies on the possible mechanisms underlying these abnormalities, which are not yet well understood, we investigate the contributions of the aqueous layers within the myelin sheath on multiple membrane properties of simulated fibre demyelinations. Four degrees of systematic paranodal demyelinations (two mild demyelinations termed PSD1 and PSD2, without/with aqueous layers respectively, and two severe demyelinations termed PSD3 and PSD4, with/without aqueous layers, respectively) are simulated using our previous multi-layered model of human motor nerve fibre. We studied the following parameters of myelinated axonal function: potentials (intracellular action, electrotonic-reflecting the propagating and accommodative fibre processes, respectively) and strength-duration time constants, rheobases, recovery cycles (reflecting the adaptive fibre processes). The results show that each excitability parameter is markedly potentiated when the aqueous layers within their paranodally demyelinated sheaths are taken into account. The effect of the aqueous layers is significantly higher on the propagating processes than on the accommodative and adaptive processes in the fibres. The aqueous layers restore the action potential propagation, which is initially blocked when they are not taken into account. The study provides new and important information on the mechanisms of chronic demyelinating neuropathies, such as chronic inflammatory demyelinating polyneuropathy (CIDP).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call