Abstract

Myelin-axolemmal interactions regulate many cellular and molecular events, including gene expression, oligodendrocyte survival and ion channel clustering. Here we report the biochemical fractionation and enrichment of distinct subcellular domains from myelinated nerve fibers. Using antibodies against proteins found in compact myelin, non-compact myelin and axolemma, we show that a rigorous procedure designed to purify myelin also results in the isolation of the myelin-axolemmal complex, a high-affinity protein complex consisting of axonal and oligodendroglial components. Further, the isolation of distinct subcellular domains from galactolipid-deficient mice with disrupted axoglial junctions is altered in a manner consistent with the delocalization of axolemmal proteins observed in these animals. These results suggest a paradigm for identification of proteins involved in neuroglial signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call