Abstract

The myelin-associated glycoprotein (MAG) exhibits an abnormally high apparent molecular weight in sciatic nerve, but not in brain, of dysmyelinating trembler mutants (Inuzuka et al.: J Neurochem 44:793-797, 1985). Antibodies to the large and small isoforms of MAG (L- and S-MAG) and probes for oligosaccharide structure were used to determine if this was due to overexpression of L-MAG or increased glycosylation. Nerves from both control and trembler 36-day-old mice contained primarily S-MAG with only traces of L-MAG. The distribution of the two isoforms appeared normal in trembler mice, and both isoforms exhibited the higher apparent molecular weight. Lectin binding showed that, in contrast to brain in which most glycoproteins contain primarily alpha 2-3 linked sialic acid, most glycoproteins of both control and trembler nerve contained primarily alpha 2-6 linked sialic acid. Lectin binding and glycosidase treatments demonstrated that the higher molecular weight of MAG in trembler nerves was due to an increased content of alpha 2-3 linked sialic acid and galactose. The abnormal glycosylation of MAG in trembler mutants may contribute to the myelin pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.