Abstract

The equilibrium structures, interaction energies, and bonding properties of ternary XHY···NCH···HM complexes are studied by ab initio calculations, where X = F, Cl, Br, Y = S, Se, and M = Li, Na, BeH, MgH. The ab initio calculations are carried out at the MP2/aug-cc-pVTZ level. The results indicate that all optimized Y···N and H···H binding distances in the ternary complexes are smaller than the corresponding values in the binary systems. The calculated cooperative energies (Ecoop) are between −0.20 kcal/mol in BrHS···NCH···HBeH and −3.29 kcal/mol in FHSe···NCH···HNa. For a given Y and M, the estimated Ecoop values increase as X = F > Cl > Br. In addition, the selenium-bonded complexes exibit larger Ecoop values than those of the sulfur-bonded counterparts. The cooperativity between Y···N and H···H interactions is further analyzed by quantum theory of atoms in molecules and natural bond orbital methods. Cooperative effects make an increase in the J(Y–N) and J(H–H) spin–spin coupling constants of the ternary complexes with respect to the binary systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call