Abstract

<p>Extreme states of the winter stratosphere, such as sudden stratospheric warmings (SSWs) or an extremely strong stratospheric polar vortex (SPV), can affect surface weather over the North-Atlantic European region on subseasonal time scales. Here we investigate the occurrence of Atlantic-European weather regimes during different stratospheric conditions in winter and their link to large-scale weather events in European sub-regions. We further elucidate if the large-scale flow regime in the North Atlantic at SSW onset determines the subsequent downward impact.</p><p>Anomalous stratospheric conditions modulate the occurrence of weather regimes which project strongly onto the NAO and the likelihood of their associated weather events. In contrast weather regimes which do not project strongly onto the NAO are not affected by anomalous stratospheric conditions. These regimes provide pathways to unexpected weather events in extreme stratospheric polar vortex states. For example, Greenland blocking (GL) and the Atlantic Trough (AT) regime are the most frequent large-scale flow patterns following SSWs. While in Central Europe GL provides a pathway to cold and calm weather, AT provides a pathway to warm and windy weather. The latter weather conditions are usually not expected after an SSW. Furthermore, we find that a blocking situation over western Europe and the North Sea (European Blocking) at the time of the SSW onset favours the GL response and associated cold conditions over Europe. In contrast, an AT response and mild conditions are more likely if GL occurs already at SSW onset. An assessment of forecast performance in ECMWF extended-range reforecasts suggests that the model tends to forecast too cold conditions following weak SPV states.</p><p>In summary, weather regimes and their response to anomalous SPV states importantly modulate the stratospheric impact on European surface weather. In particular the tropospheric impact of SSW events critically depends on the tropospheric state during the onset of the SSW. We conclude that a correct representation of weather regime life cycles in numerical models could provide crucial guidance for subseasonal prediction.</p><p> </p><p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call