Abstract

IntroductionTorsion dystonia type 1 is the most common form of early-onset primary dystonia. Previous reports have suggested that torsin 1A, a protein mutated in this disease, might function as a chaperone that prevents the toxic aggregation of misfolded polypeptides.The aim of the studyThe aim of this study was to verify the chaperone function of torsin 1A by investigating its ability to prevent the aggregation of huntingtin model peptides.Materials and methodsN-terminal mutant huntingtin fragments of different length were co-expressed in neuronal HT-22 and non-neuronal HeLa cells with either the wild-type or mutant (ΔE302/303) torsin 1A protein. The transfected cells were immunostained and analyzed for the presence of huntingtin aggregates using fluorescence microscopy.ResultsThe immunofluorescence analysis of huntingtin subcellular distribution within the transfected cells showed no significant difference between the huntingtin aggregation levels in cells co-expressing the wild-type torsin 1A and in control cells co-transfected with an empty vector. Instead, it was the increased level of huntingtin aggregation in the presence of the torsion dystonia-causing ΔE302/303 mutant that reached statistical significance in both neuronal and non-neuronal cells.ConclusionsEither torsin 1A does not function as a chaperone protein or huntingtin is not an efficient substrate for such a hypothetical chaperone activity. However, the ability of mutant torsin 1A to stimulate the accumulation of aggregation-prone polypeptides might constitute an important source of ΔE302/303 pathogenicity and thus a potential target for future therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call