Abstract
AbstractWe characterized a consanguineous Turkish family suffering from von Willebrand disease (VWD) with significant mucocutaneous and joint bleeding. The relative reduction of large plasma von Willebrand factor (VWF) multimers and the absent VWF triplet structure was consistent with type 2A (phenotype IIC) VWD. Surprisingly, platelet VWF was completely deficient of multimers beyond the VWF protomer, suggesting defective α-granular storage of larger multimers. Patients were nearly unresponsive to desmopressin acetate, consistent with a lack of regulated VWF release from endothelial cell Weibel-Palade bodies, suggesting defective storage also in endothelial cells. We identified an N528S homozygous mutation in the VWF propeptide D2 domain, predicting the introduction of an additional N-glycosylation site at amino acid 526 in close vicinity to a “CGLC” disulphide isomerase consensus sequence. Expression studies in mammalian cells demonstrated that N528S-VWF was neither normally multimerized nor trafficked to storage granules. However, propeptide containing the N528S mutation trafficked normally to storage granules. Our data indicate that the patients' phenotype is the result of defective multimerization, storage, and secretion. In addition, we have identified a potentially novel pathogenic mechanism of VWD, namely a transportation and storage defect of mature VWF due to defective interaction with its transporter, the mutant propeptide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.