Abstract
Since the modern synthesis, the fitness effects of mutations and epistasis have been central yet provocative concepts in evolutionary and population genetics. Studies of how the interactions between parcels of genetic information can change as a function of environmental context have added a layer of complexity to these discussions. Here, I introduce the "mutation effect reaction norm" (Mu-RN), a new instrument through which one can analyze the phenotypic consequences of mutations and interactions across environmental contexts. It embodies the fusion of measurements of genetic interactions with the reaction norm, a classic depiction of the performance of genotypes across environments. I demonstrate the utility of the Mu-RN through a case study: the signature of a "compensatory ratchet" mutation that undermines reverse evolution of antimicrobial resistance. In closing, I argue that the mutation effect reaction norm may help us resolve the dynamism and unpredictability of evolution, with implications for theoretical biology, biotechnology, and publichealth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.