Abstract

The introduction of whole genome and exome sequencing partnered with advanced bioinformatic pipelines has allowed the comprehensive characterization of mutational processes (i.e., mutational signatures) in individual cancer patients. Studies focusing on multiple myeloma have defined several mutational processes, including a recently identified mutational signature (called "SBS-MM1") directly caused by exposure to high-dose melphalan (i.e., autologous stem cell transplant). High-dose melphalan exposure increases both the overall and nonsynonymous mutational burden detected between diagnosis and relapse by ~10-20%. Nevertheless, most of these mutations are acquired within the heterochromatin and late-replicating regions, rarely involving key myeloma driver genes. In this review, we summarize key studies that made this discovery possible, and we discuss potential clinical implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.